The scaffold protein EPG-7 links cargo–receptor complexes with the autophagic assembly machinery
نویسندگان
چکیده
The mechanism by which protein aggregates are selectively degraded by autophagy is poorly understood. Previous studies show that a family of Atg8-interacting proteins function as receptors linking specific cargoes to the autophagic machinery. Here we demonstrate that during Caenorhabditis elegans embryogenesis, epg-7 functions as a scaffold protein mediating autophagic degradation of several protein aggregates, including aggregates of the p62 homologue SQST-1, but has little effect on other autophagy-regulated processes. EPG-7 self-oligomerizes and is degraded by autophagy independently of SQST-1. SQST-1 directly interacts with EPG-7 and colocalizes with EPG-7 aggregates in autophagy mutants. Mutations in epg-7 impair association of SQST-1 aggregates with LGG-1/Atg8 puncta. EPG-7 interacts with multiple ATG proteins and colocalizes with ATG-9 puncta in various autophagy mutants. Unlike core autophagy genes, epg-7 is dispensable for starvation-induced autophagic degradation of substrate aggregates. Our results indicate that under physiological conditions a scaffold protein endows cargo specificity and also elevates degradation efficiency by linking the cargo-receptor complex with the autophagic machinery.
منابع مشابه
C. elegans Screen Identifies Autophagy Genes Specific to Multicellular Organisms
The molecular understanding of autophagy has originated almost exclusively from yeast genetic studies. Little is known about essential autophagy components specific to higher eukaryotes. Here we perform genetic screens in C. elegans and identify four metazoan-specific autophagy genes, named epg-2, -3, -4, and -5. Genetic analysis reveals that epg-2, -3, -4, and -5 define discrete genetic steps ...
متن کاملHigher‐order assemblies of oligomeric cargo receptor complexes form the membrane scaffold of the Cvt vesicle
Selective autophagy is the mechanism by which large cargos are specifically sequestered for degradation. The structural details of cargo and receptor assembly giving rise to autophagic vesicles remain to be elucidated. We utilize the yeast cytoplasm-to-vacuole targeting (Cvt) pathway, a prototype of selective autophagy, together with a multi-scale analysis approach to study the molecular struct...
متن کاملCargo- and compartment-selective endocytic scaffold proteins.
The endocytosis of membrane receptors is a complex and tightly controlled process that is essential for maintaining cellular homoeostasis. The removal of receptors from the cell surface can be constitutive or ligand-induced, and occurs in a clathrin-dependent or -independent manner. The recruitment of receptors into specialized membrane domains, the formation of vesicles and the trafficking of ...
متن کاملMolecular Mechanism of Autophagic Membrane-Scaffold Assembly and Disassembly
Autophagy is a catabolic pathway that sequesters undesired cellular material into autophagosomes for delivery to lysosomes for degradation. A key step in the pathway is the covalent conjugation of the ubiquitin-related protein Atg8 to phosphatidylethanolamine (Atg8-PE) in autophagic membranes by a complex consisting of Atg16 and the Atg12-Atg5 conjugate. Atg8 controls the expansion of autophagi...
متن کاملType Iγ phosphatidylinositol phosphate kinase modulates adherens junction and E-cadherin trafficking via a direct interaction with μ1B adaptin
Assembly of E-cadherin-based adherens junctions (AJ) is obligatory for establishment of polarized epithelia and plays a key role in repressing the invasiveness of many carcinomas. Here we show that type Igamma phosphatidylinositol phosphate kinase (PIPKIgamma) directly binds to E-cadherin and modulates E-cadherin trafficking. PIPKIgamma also interacts with the mu subunits of clathrin adaptor pr...
متن کامل